博客
关于我
Wannafly挑战赛22 A.计数器(n个整数间的裴蜀定理)
阅读量:218 次
发布时间:2019-03-01

本文共 552 字,大约阅读时间需要 1 分钟。

题意

在数论中,给定一组数,要求找出这些数的最大公约数(GCD)。具体来说,给定一组数a₁, a₂, ..., aₙ,和一个数m,求这些数与m的最大公约数g。通过分析这些数的性质,我们可以找出解决方案。

解法

要解决这个问题,我们可以采用以下步骤: 1. 初始化g为m的值。 2. 遍历每一个数a_i,更新g为当前g与a_i的最大公约数。 3. 最终得到的g即为所求的最大公约数。 这种方法利用了数论中的最大公约数性质,能够高效地解决问题。

代码示例

```cpp #include
using namespace std;

#define int long long

const int maxm = 1e5 + 5;

int a[maxm];
int n, m;

signed main() {

ios::sync_with_stdio(0);
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int g = m;
for (int i = 1; i <= n; ++i) {
g = __gcd(g, a[i]);
}
cout << g << endl;
}

以上代码实现了上述解法,能够高效地计算多个数与m的最大公约数。

转载地址:http://mlkv.baihongyu.com/

你可能感兴趣的文章
ny540 奇怪的排序 简单题
查看>>
NYOJ 1066 CO-PRIME(数论)
查看>>
NYOJ 737:石子合并(一)(区间dp)
查看>>
nyoj 91 阶乘之和(贪心)
查看>>
nyoj------203三国志
查看>>
NYOJ-525 一道水题
查看>>
nyoj58 最少步数
查看>>
N皇后问题
查看>>
N皇后问题
查看>>
OAuth 2.0 MAC Tokens
查看>>
OAuth 及 移动端鉴权调研
查看>>
OAuth2 + Gateway统一认证一步步实现(公司项目能直接使用),密码模式&授权码模式
查看>>
OAuth2 Provider 项目常见问题解决方案
查看>>
OAuth2 vs JWT,到底怎么选?
查看>>
Vue.js 学习总结(14)—— Vue3 为什么推荐使用 ref 而不是 reactive
查看>>
oauth2-shiro 添加 redis 实现版本
查看>>
OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
查看>>
OAuth2.0_JWT令牌介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记147
查看>>
OAuth2.0_介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记137
查看>>
OAuth2.0_完善环境配置_把资源微服务客户端信息_授权码存入到数据库_Spring Security OAuth2.0认证授权---springcloud工作笔记149
查看>>