博客
关于我
Wannafly挑战赛22 A.计数器(n个整数间的裴蜀定理)
阅读量:218 次
发布时间:2019-03-01

本文共 552 字,大约阅读时间需要 1 分钟。

题意

在数论中,给定一组数,要求找出这些数的最大公约数(GCD)。具体来说,给定一组数a₁, a₂, ..., aₙ,和一个数m,求这些数与m的最大公约数g。通过分析这些数的性质,我们可以找出解决方案。

解法

要解决这个问题,我们可以采用以下步骤: 1. 初始化g为m的值。 2. 遍历每一个数a_i,更新g为当前g与a_i的最大公约数。 3. 最终得到的g即为所求的最大公约数。 这种方法利用了数论中的最大公约数性质,能够高效地解决问题。

代码示例

```cpp #include
using namespace std;

#define int long long

const int maxm = 1e5 + 5;

int a[maxm];
int n, m;

signed main() {

ios::sync_with_stdio(0);
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int g = m;
for (int i = 1; i <= n; ++i) {
g = __gcd(g, a[i]);
}
cout << g << endl;
}

以上代码实现了上述解法,能够高效地计算多个数与m的最大公约数。

转载地址:http://mlkv.baihongyu.com/

你可能感兴趣的文章
Neo4j的安装与使用
查看>>
Neo4j(2):环境搭建
查看>>
Neo私链
查看>>
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netcat的端口转发功能的实现
查看>>
netfilter应用场景
查看>>
netlink2.6.32内核实现源码
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty事件注册机制深入解析
查看>>