博客
关于我
Wannafly挑战赛22 A.计数器(n个整数间的裴蜀定理)
阅读量:218 次
发布时间:2019-03-01

本文共 552 字,大约阅读时间需要 1 分钟。

题意

在数论中,给定一组数,要求找出这些数的最大公约数(GCD)。具体来说,给定一组数a₁, a₂, ..., aₙ,和一个数m,求这些数与m的最大公约数g。通过分析这些数的性质,我们可以找出解决方案。

解法

要解决这个问题,我们可以采用以下步骤: 1. 初始化g为m的值。 2. 遍历每一个数a_i,更新g为当前g与a_i的最大公约数。 3. 最终得到的g即为所求的最大公约数。 这种方法利用了数论中的最大公约数性质,能够高效地解决问题。

代码示例

```cpp #include
using namespace std;

#define int long long

const int maxm = 1e5 + 5;

int a[maxm];
int n, m;

signed main() {

ios::sync_with_stdio(0);
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int g = m;
for (int i = 1; i <= n; ++i) {
g = __gcd(g, a[i]);
}
cout << g << endl;
}

以上代码实现了上述解法,能够高效地计算多个数与m的最大公约数。

转载地址:http://mlkv.baihongyu.com/

你可能感兴趣的文章
Nginx配置参数中文说明
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO基于UDP协议的网络编程
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>